Memory Hierachy¶
Introduction¶
Memory¶
内存层次:
- Register
- Cache
- Memory
- Storage
存储技术:
- Mechanical Memory
- Electronic Memory
- SRAM
- DRAM
- SDRAM
- DDR
- GDRAM
- GDDR
- HBM
- EPPROM
- NAND
- NOR
- Optical Memory
Cache Concept¶
Cache: a safe place for hiding or storing things. (现在也不安全)
-
Cache Hit/Miss: When the processor can/cannot find a requested data item in the cache
Cache Miss 会带来额外的开销:由 Latency, Bandwith 决定。
-
Cache Block/Line: A fixed-size collection of data containing the requested word, retrieved from the main memory and placed into the cache.
-
Cache Locality:
-
Temporal locality: need the requested word again soon
访问过这个数据,之后很可能再次访问这个数据。
-
Spatial locality: likely need other data in the block soon
访问了这个位置,之后很可能访问下一个位置。
-
36 terms of Cache
Four Questions for Cache Designers¶
这部分内容可见计组笔记
Caching is a general concept used in processors, operating systems, file systems, and applications.
- Q1: Where can a block be placed in the upper level/main memory? (Block placement)
- Fully Associative, Set Associative, Direct Mapped
- Q2: How is a block found if it is in the upper level/main memory? (Block identification)
- Tag/Block
- Q3: Which block should be replaced on a Cache/main memory miss? (Block replacement)
- Random, LRU,FIFO
- Q4: What happens on a write? (Write strategy)
- Write Back or Write Through (with Write Buffer)
Q1: Block Placement¶
-
Direct mapped
一个块在 cache 中有一个固定的位置(通常通过取模得到)。
-
Fully associative
块可以放在 cache 里的任意位置。(不好找)
-
Set associative
- 块可以在一个组里的任何位置,组里可以放若干个块。
- 直接映射相当于一路组相联,全相联相当于 n 路组相联(n 是 cache 的块数)
一般情况,\(n\leq 4\)
Q2: Block Identification¶
Q3: Block Replacement¶
- Random replacement - randomly pick any block
-
Least-Recently Used (LRU) - pick the block in the set which was least recently accessed
需要额外的位数来记录访问的时间。一般我们用的是近似的 LRU。
-
First In, First Out (FIFO) - Choose a block from the set which was first came into the cache
Strategy of Block Replacement
Suppose:
-
Cache block size is 3, and access sequence is shown as follows.
2, 3, 2, 1, 5, 2, 4, 5, 3, 4
-
FIFO, LRU and OPT are used to simulate the use and replacement of cache block. (OPT 是一种理想情况,用来衡量算法性能)
-
FIFO
-
LRU
-
OPT
-
Hit rate is related to the replacement algorithm, the access sequence, the cache block size.
Stack replacement algorithm¶
有些算法随着 N 增大命中率非下降,有些算法随着 N 增大命中率反而会下降。
我们把随着 N 增大命中率非下降的算法称为 stack replacement algorithm。
\(B_t(n)\) represents the set of access sequences contained in a cache block of size \(n\) at time \(t\).
- \(B_t(n)\) is the subset of \(B_t(n+1)\).
LRU replacement algorithm is a stack replacement algorithm, while FIFO is not.
For LRU algorithm, the hit ratio always increases with the increase of cache block.
Using LRU
用栈来模拟 LRU,栈顶是最近访问的,栈底是最久未访问的,每次要替换的时候,替换栈底的元素。通过下面的图可以快速看到栈大小为 n 时的命中率。
LRU Implementation - Comparison Pair Method¶
如何只通过门和触发器来实现 LRU 算法?—— Comparison Pair Method
-
Basic idea
Let each cache block be combined in pairs, use a comparison pair flip-flop to record the order in which the two cache blocks have been accessed in the comparison pair, and then use a gate circuit to combine the state of each comparison pair flip-flop, you can find the block to be replaced according to the LRU algorithm.
让任何两个 cache 块之间两两结对,用一个触发器的状态来代表这两个块的先后访问顺序(比如 1 表示 A 刚被访问,0 表示 B 刚被访问)。通过门电路对触发器的状态进行逻辑组合,找到最久未被访问的块。
Comparison Pair Method
这里有 3 个 cache blocks A, B, C。那么我们需要 3 个触发器来记录之间的状态。假设 \(T_{AB}=1\) 表示 A 被更近访问,\(T_{AC}, T_{BC}\) 同理。
-
Hardware usage analysis
假设有 p 个 cache blocks, 我们需要 \(C_p^2=p\cdot (p-1)/2\) 个触发器。
当 \(p\) 超过 8 时,需要的触发器过多,这个算法就不适用了。
Q4: Write Strategy¶
-
Write Hit
-
Write Through:同时写回 cache 和内存。
写到内存的时间较长,这个过程需要 Write Stall,或者使用 Write Buffer。
-
Write Back:在 Cache 中写,同时通过一个额外的 dirty bit 表示这个块已经被修改。
-
-
Write Miss
- Write Allocate:将要写的块先读到 Cache 中,再写。
- Write Around:直接写到内存。
- In general, write-back caches use write-allocate , and write-through caches use write-around.
Example
Memory System Performance¶
这部分也可见计组笔记
How to improve
- Reduce the miss penalty
- Reduce the miss rate
- Reduce the time to hit in the cache
- Reduce the miss penalty and miss rate via parallelism
Virtual Memory¶
物理内存有限,虚拟内存让用户体验到一个抽象的更大的内存。
-
Why virtual memory?
可以让进程使用不连续的物理内存空间(虚拟地址上是连续的);更好地隔离不同进程。
-
virtual-physical address translation
- memory protection/sharing among multi-program
Virtual Memory = Main Memory + Secondary Storage
-
Virtual Memory Allocation
-
Paged virtual memory
page: fixed-size block
-
Segmented virtual memory
segment: variable-size block
-
Paging vs Segmentation
分页式的易于实现,方便替换。现在常用段页式结合,或者纯页式。
How virtual memory works?¶
Cache 的四个问题在虚拟内存中都有对应。
-
Q1. Where can a block be placed in main memory?
缺失代价很高,因此我们采用全相联的方式,以降低 miss rate。
-
Q2. How is a block found if it is in main memory?
虚拟地址分两部分,偏移量和页号。页号是页表的索引。
-
Q3. Which block should be replaced on a virtual memory miss?
Least Recently Used (LRU) block, with use/reference bit.
-
Q4. What happens on a write?
Write-back strategy, with diry bit.
Page Table¶
-
Page tables are often large
e.g. 32-bit virtual address, 4KB pages, 4 bytes per page table entry.
page table size: \((2^{32}/2^{12}) \times 2^2 = 2^{22}\) bytes = \(4\) MB -
Logically two memory accesses for data access:
- one to obtain the physical address from page table;
- one to get the data from the physical address;
正常来说页表需要两次内存访问,访问效率低下,因此我们需要 cache page table,即 TLB。
Translation lookaside buffer (TLB)
- tag: portions of the virtual address (VPN);
- data: a physical page frame number (PPN), protection field, valid bit, use bit, dirty bit;
Example
发送 tag (VPN) 尝试匹配,并看访问类型是否违规。如果匹配成功,就把对应的 PPN 送到 Mux,将偏移量加上 PPN 得到物理地址。
Page Size Selection¶
-
Pros of larger page size
-
Smaller page table, less memory (or other resources used for the memory map);
页更少,所以页表更小。
-
Larger cache with fast cache hit;
页更大,所以 cache 命中的时间更短(因为我们需要遍历的页更少)。
-
Transferring larger pages to or from secondary storage is more efficient than transferring smaller pages;
一次搬运更多的数据,所以更高效,小页可能需要搬运多次。
-
Map more memory, reduce the number of TLB misses;
TLB miss 次数更少。
-
-
Pros of smaller page size
-
Conserve storage
When a contiguous region of virtual memory is not equal in size to a multiple of the page size, a small page size results in less wasted storage.
减少对内存的使用,内部碎片更少。
-
Use both: multiple page sizes
Address Translation
Summary¶
Summary
-
Memory hierarchy
- From single level to multi level
- Evaluate the performance parameters of the storage system (average price per bit C; hit rate H; average memory access time T)
-
Cache basic knowledge
- Mapping rules
- Access method
- Replacement algorithm
- Write strategy
- Cache performance analysis
-
Virtual Memory (the influence of memory organization structure on Cache failure rate)